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Directly determined localized approximate molecular orbitals are used in 
excitation energy and optical rotatory strength calculations within the 
C N D O / 2  scheme. Using strictly localized bond orbitals one obtains qualita- 
tively good excitation energies, but quantitative agreement can be found only 
by considering delocalization effects, which have been proved to be crucial 
in determining the optical rotatory strength. The delocalization interactions 
are classified as through space and through bond ones and even the latter is 
found to have significant contributions. The chiroptical properties of the 
lowest lying transitions in the twisted glyoxal molecule are analysed in terms 
of localized molecular orbital contributions. 
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1. Introduction 

The concept of localized orbitals has been widely used in the description of 
molecular ground states [1]. Recently there is an increasing interest in the use 
of localized molecular orbitals (LMO-s) to study the excited states as well [2-5]. 
Localized orbitals offer a valuable tool to analyse the characteristics of the 
electronic transitions according to the well-known chromophore  concept which 
has a basic importance in the models of the optical activity [6-9]. On the basis 
of the success of these theories in understanding the circular dichroism of organic 
and inorganic molecules, one can hope that the localized MO approach has not 
only an interpretative value, but it may serve also as a good starting point at 
different levels of sophistication to calculate the chiroptical properties of 
molecules. 
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The R01 optical rotatory strength, associated to the 0 ~ i electron transition, is 
defined in the dipole velocity form [10] as: 

e2h 3 
^ A 

Ro~ = 2m2cAEo~ (OIVli)~ilr • (1) 

where AEoi = E l - E o  is the transition energy; the constants e, m, h and c have 
the usual meaning. In most quantum chemical calculations of Roi the (01 ground 
state wave function is represented as a single determinant of canonical molecular 
orbitals [11], while the excited state wave function is approximated by linear 
combination of singly excited determinants. This computational scheme gives 
more or less reliable rotational strengths, but the delocalized nature of the 
canonical orbitals makes very difficult the interpretation of the results in terms 
of interacting molecular fragments and chromophores. 

The need for a deeper understanding of the optical rotatory phenomena led to 
the development of calculational tools which permit such type of analyses. One 
possibility is to use a posteriori localized molecular orbitals, i.e. orbitals obtained 
from the SCF canonical ones according to some localization criteria [12-14]. 
These orbitals afford a systematic investigation of the most important 
intramolecular interactions determining the sign of the rotational strength 
[15-18]. However, due to the large amount of computational work necessary 
in the treatment of larger molecular systems with the usual SCF MO methods, 
the development of new calculational schemes would be advantageous. 

Recently an efficient method, based on a priori localized molecular orbitals, was 
proposed to investigate ground-state properties (conformational energies) of 
large molecules [19, 20]. The aim of the present paper is to examine the usefulness 
and the reliability of this scheme for the determination of excitation properties, 
namely the excitation energy and the optical rotatory strength. After summarizing 
the methodological details we present some applications at the CNDO/2 level 
on simple molecules, such as H20, H2CO and the twisted glyoxal molecule, 
which is a typical example for an optically active chromophoric system. 

2. Method 

In the construction of a single determinantal ground state wave function from 
a priori localized bonding orbitals, the simplest approximation is to use strictly 
localized molecular orbitals (SLMO-s). These orbitals are built up from one or 
two atomic hybrids (lone pairs or bonds, respectively). This simple wave function 
describes rather poorly the electronic structure because of the neglection of all 
delocalization effects [21]. 

The delocalization corrections (tails) to the SLMO-s can be accounted for by 
choosing the localized molecular orbitals (LMO-s) in the following way: 

virt 
ffi = ~o + E r/ik6 ~ (2a) 

k 
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occ 

to, = too, _ y~ nk~to o (2b) 
k 

where too (too,) is the occupied (virtual) SLMO, and the sums represent the tails. 
The bonding LMO-s (2a) have tails only on the antibonding orbitals, while the 
antibonding ones (2b) have tails only on bonding orbitals. This assumption does 
not imply any approximation, since the exact nonorthogonal (SCF) LMO-s can 
always be written in such a form [22, 23]. 

One way to determine the ~ik coefficients is the recently proposed linearized 
SCF (LSCF) method [19], which gives the most important part of the delocaliza- 
tion corrections corresponding to the through space interactions (TSI) [23]. In 
this procedure the SCF Hartree-Fock-Roothan equations are written in the 
bonding-antibonding basis of SLMO-s and are solved analytically for the 
unknown small delocalization corrections within a linearized approximation. The 
linearization means here, that all the terms containing squares or products of 
tails are dropped from the SCF equations. In this approximation the following 
formula is obtained for the tails [20]: 

TSI h E k - , i * F i  ~  + ( i i * ] k k * ) V ~  * 
T~i k ~ "17 ik  - -  ( i i * [kk  *) - AEi~ ,k*AEk- , i*  (3) 

where F ~ is the Fockian constructed on the basis of the SLMO-s, AEi_~k is the 
energy of the i->k excitation, the two-electron integrals are written in the 
(11122) convention. 

Another type of the delocalization corrections originates from the through bond 
interactions (TBI) [23]. This can also be partly taken into account introducing 
a further term in the tail formula [23]: 

TSI q_ n T B I  (4) 
T l i k  ~ ~ ik  

where 

r v0 TSI x ~ 7-,0 TSI 
r iirl jk -- 7. r i*k *'q q 

TBI i i 
m k  - ( 5 )  

z ~ k E  i -~ k * 

The formulas (3-5) may turn out to be useful for the systematic investigation 
of the different types of the delocalization corrections. It should be emphasized 
that the terminology of the "through space" and "through bond" interactions 
was used in a somewhat different manner in a recent paper of Imamura and 
Hirao [17]. In the present article we prefer the formulation developed very 
recently by Surjfin et al. [23], where the concept of TSI and TBI is directly 
connected to the nature of the electron delocalization. The general characteristics 
of tails (3) is that they give almost exactly the f i r s t - n e i g h b o u r  delocalization 
corrections, while the tails (5) account for the s e c o n d - n e i g h b o u r  delocalization 
interactions. The long range tails arise due to through-many-bond effects [23] 
and they are neglected throughout this work. 
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To avoid difficulties arising from the nonorthogonality of the approximate LMO-s 
obtained in the above schemes, we subject the LMO-s to an orthonormalization 
procedure. The L/~wdin orthogonalization is chosen, because its maximum 
resemblance property preserves the localized character of the molecular orbitals 
to an optimal extent. Having orthonormal LMO-s the expectation values and 
the matrix elements of the operators can be computed in the usual way. This 
feature of the present method has considerable advantages with respect to the 
perturbative approaches such as PCILO [24] where the calculation of these 
quantities is not always straightforward. 

After discussing the actual form of the approximate a priori localized molecular 
orbitals, let us turn to the problem of representing the excited state wave function. 
It is well-known that the SCF canonical MO-s have a privileged role in the 
description of excited states. Using canonical orbitals a simple single transition 
approximation: 

1 +. 
]k) ~ ( a j  ~ai~ + aT*~ai~)lqb0) = qb;-,i* (6) 

(here aT.~ and a~-~ are the creation and annihilation operators respectively, d~0 
is the ground state determinant of doubly occupied spin orbitals) usually preserves 
the symmetry properties of the excited state, which remains eigenfunction of 
the molecular symmetry operators. On the other hand, using localized orbitals 
an excited state wave function of the form (6) is no more eigenfunction of the 
symmetry operators, consequently the single transition approximation may lead 
to serious errors. 

A more sophisticated method, which overcomes the above difficulty, involves a 
CI treatment of the singly excited determinants. The exact SCF orbitals have 
the important property, that as a consequence of the Brillouin theorem, the 
singly excited configurations constructed from them do not interact with the 
ground state. Thus the ground state remains the single determinant qb0 after an 
"all single" CI and the matrix elements of any one electron operator A = ~. di 
can be calculated as: 

(olAlk>  E cL,.<OolAIoi j.>= E 1 (7) 

where C~_~j. are the CI expansion coefficients, ~ and ~j are the occupied and 
virtual molecular orbitals, respectively. As it is known, orbitals spanning exactly 
the occupied and virtual subspaces lead to identical results at the all single CI 
level (Tamm-Dankoff approximation, TDA), irrespectively from the actual - 
canonical or localized - nature of the orbitals. 

The localized orbitals proposed in the present work, even with delocalization 
corrections (tails), are of approximate nature, so the Brillouin theorem is violated. 
A ground state determinant, constructed from SLMO-s, interacts rather strongly 
with the corresponding singly excited determinants, so a "first order description" 
[3] of the excited states have to be handled with some care. However, the 
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consideration of the tail corrections may amend this situation. The TSI tail 
corrections are obtained in the LSCF framework in such a way, that the local 
Brillouin theorem 

be satisfied up to the first order. As this theorem is the condition of the 
selfconsistency, and is equivalent to the usual Brillouin theorem [25-27] 

the present wave function satisfies the Brillouin theorem to the first order. The 
introduction of higher order tail corrections (e.g. TBI) leads to further improve- 
ment in this respect. In the light of the above argument it seems reasonable to 
neglect the matrix elements of the Hamiltonian between the ground state and 
the singly excited determinants, since their contribution is only a higher order 
effect. 

Finally, let us emphasise that our approach to construct the excited states differs 
significantly also from the more refined methods of Langlet and her coworkers 
[3-5]. These authors performed a (perturbative) CI in the basis of the SLMO-s 
according to the philosophy of the PCILO method, so both electron and exciton 
delocalization effects are considered within the same CI procedure. Our method 
accounts for these effects in two separate steps. The electron delocalization is 
accounted for by the appropriate tail corrections added to the occupied and 
virtual SLMO-s, while the role of the CI performed in the basis of these corrected 
LMO-s is to consider the exciton delocalization in the excited states. 

3. Results 

The calculations presented in this section were done at the CNDO/2 level of 
approximation. The results obtained by using four types of molecular orbitals 
will be discussed, namely: 

(1) strictly localized molecular orbitals (SLMO-s); 
(2) tail corrections to the SLMO-s are calculated within the LSCF scheme (Eq. 

(3)), when only TSI is accounted for; 
(3) tails originating from TBI (Eq. (5)) are also considered in addition to the 

TSI ones; 
(4) canonical molecular orbitals obtained from a full SCF calculation. 

As it was mentioned in the previous section, the ground state wave function was 
represented as a single determinant and the excited states were approximatec] 
at the all single CI level. 

3.1. Excitation Energies in Small Molecules 

Table 1 summarizes the excitation energies obtained with the approximations 
(1) to (4) for water and formaldehyde. The wave function built up from SLMO-s 
already gives excitation energies in a rather fair agreement with the full SCF 
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Table 1o Excitation energies (eV) of water and 
different approximations 

J. fi-ngyfin and P. Surj~in 

formaldehyde calculated with 

SLMO TSI TSI + TBI SCF 

H20 9.51 9.53 9.61 9.57 
10.01 10.01 10.07 10.07 
12.70 12.72 12.77 12.79 
12.94 12.94 13.03 13.00 
17.30 17.33 17.33 17.33 

HzCO 3.58 4.10 4.40 4.46 
9.01 9.01 9.28 9.16 

10.44 11.33 11.65 11.10 
11.92 11.61 11.75 11.37 
12.16 12.45 12.93 13.10 
13.06 14.02 14.47 14.12 
14.32 14.15 14.67 14.27 

results, however the tail corrections arising from TSI and TBI provide for a 
considerable improvement in the results. In the case of these small molecules 
the considered tail corrections account for almost the whole delocalization effect, 
since there are no long range interactions. 

3.2. Excitation Energies in Glyoxal 

The excitation energies obtained with different approximations for the six lowest- 
lying transitions of the trans planar glyoxal are summarized in Table 2. The first 
two transitions are of n-~ r type in accordance with the experiments. The 
CNDO/2 parametrization fails to describe properly the ordering of the further 
transitions: we found two o'~zr* type transitions before the ~ - ~ *  ones. A 
general observation is that the stepwise improvement of the wave function by 
considering the delocalization corrections (see approximations (1) to (3)), brings 
the transition energies closer to the full SCF results. 

Fig. 1 depicts the excitation energies of the lowest lying and of the next to the 
lowest lying transitions as the function of the twist angle O (for definition of 0 
see Fig. 2), calculated by the two type of tail corrected and by the full SCF wave 
functions. The planar trans and cis conformations belong to the C2h and C2v 

Table 2. Excitation energies (eV) in planar t r a n s  glyoxal (O = 0 ~ 

Transition SLMO TSI TSI + TBI SCF 

Au 2.44 2.65 2.77 2.77 
Bg 2.97 3.44 3.64 3.84 
A .  7.22 6.96 7.03 6.65 
Bg 7.06 7.78 7.75 7.42 
Bu 7.81 8.11 8.33 8.22 
Ag 9.88 10.17 10.20 9.86 
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Fig. 1. Transition energies of the first two n -* lr* excitations in glyoxal as a function of the twist 
angle O, calculated by different approximations: full SCF ( ), TSI+TBI ( . . . . .  ), TSI ( . . . .  ) 

Fig. 2. Definition of the twist angle O. The chirality (helicity) of 
the glyoxal is positive in the figure 

O@ 
H - " O  

point  groups  respectively,  while the nonp lanar  conformat ions  are of C2 symmetry .  
The  excited states can be classified according to the irreducible representa t ions  
of these point  groups.  In  ag reement  with previous  studies on this system [28, 29], 
we found  that  at t ransoid conformat ions  the transit ion of symmet ry  A (symmetric  
with respect  to the (72 axis) lies at the lowest energy,  while at cisoid conformat ions  
the transit ion of symmet ry  B (ant i -symmetr ic  with respect  to the C2 axis) is the 
lowest lying. A crossing is found  at about  O = 90 degrees.  These  overall  quali ta-  
tive features  of the curves are correct ly r ep roduced  by all the approximat ions ,  
including the S L M O  me thod  which is not  p resented  in the Fig. 1. 

As  to the quant i ta t ive agreement ,  the S L M O  m e t h o d  strongly underes t imates  
the splitting be tween  the two n -* ~r* transit ions in the whole  twist angle region. 
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The results obtained with the tail corrected wave functions run nearly parallel 
to the full SCF results, although the splitting is underestimated here also. The 
introduction of the tail corrections due to TBI leads to a further significant 
improvement of the excitation energies: half of the error relative to the simple 
tails (3) from TSI is accounted.for. Practically quantitative agreement was found 
between the TBI and the full SCF results in the two nearly planar conformation 
regions. 

3.3. Rotational Strengths of the Twisted Glyoxal 

The chiroptical properties of the optically active vicinal diketo compounds can 
be interpreted in terms of the inherently chiral a-dicarbonyl chromophore. The 
twisted glyoxal molecule, the simplest model for this chromophoric system, was 
studied previously by Hug and Wagni~re [28, 29] using semiempirical quantum 
chemical methods. In the localized picture adopted here the a-diketo system 
can be considered as a dimer of two carbonyl moieties interacting via the 
carbon-carbon bond. This interaction is rather strong because of the proximity 
of the carbonyl groups, so this molecule may be a stringent test to the reliability 
of the approximate scheme proposed here. 

The geometrical parameters of the glyoxal molecule were taken from [28], in 
all the calculations reported the helicity of the glyoxal was held positive, according 
to the definition of Hug and Wagni~re [30] (see Fig. 2). 

The rotational strengths of the first two n ~ zr* transitions of A and B symmetry 
are depicted in Figures 3a and 3b respectively, as a function of the twist angle 
O. Only results obtained with the full SCF and the tail corrected methods are 
presented; the SLMO rotational strengths are completely erroneous compared 
to the full SCF ones. Our full SCF rotational strengths do not obey to the 
well-known Cz rule [30] (for positive chirality positive rotational strength for a 
B transition, negative one for an A transition): we get the predicted sign only 
in a small range of the twist angle (155~ O < 180~ However it is interesting 
to note that our results are probably not in disagreement with experimental 
findings, since in most of the a- diketo compounds reported by Hug and Wagni~re 
[29] as examples for the rule, the twist angle is in the 160~ O < 170 ~ range. 

Rather good agreement is found between the TSI and the full SCF results for 
the A transition; the consideration of the TBI tail corrections leads to a nearly 
quantitative agreement. The situation for the B transition is somewhat different: 
the TSI tail corrected LMO-s fail to reproduce the full SCF results, even the 
sign of the rotational strength is incorrect practically in the whole twist angle 
region. The introduction of the TBI tails leads to a significant improvement, as 
the correct sign of the rotational strength is retrieved in the nearly planar 
conformations and the overall shape of the curve is better approximated. 

An analysis of the transition moment components based on the localized 
molecular orbitals may give some insight into the fine details of the optical 
rotatory strength of the transitions. In the localized basis we may divide the 
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Fig. 3. Rotational strengths of the first two n - z : *  transitions in glyoxal as a function of the twist 
angle ~. For designations see Fig. 1. (a) transition of symmetry A. (b) transition of symmetry B 

singly excited configurations into two groups, One group contains configurations 
arising from excitation from a bonding or nonbonding orbital to an antibonding 
one, both localized on the same chromophore: this can be called a localized 
excitation. The other type of configurations comes from excitations from a 
bonding or nonbonding orbital to an antibonding one on another chromophore: 
this is an interchromophoric charge transfer configuration. We can expect that 
the latter type of configurations are not as well described as the locally excited 
ones, so the errors inherent in the method accumulate when the charge transfer 
configurations dominate. 

The above idea is fairly supported by our findings, namely that the rotational 
strength of the A transition is well reproduced by the approximate localized 
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orbital scheme, while the agreement is rather poor for the B transition. It follows 
from symmetry considerations that the transition moment components in the 
plane perpendicular to the C2 axis - and so in the plane containing the inter- 
chromophoric bond - are forbidden. This selection rule is realized in the localized 
picture in such a way that the transition moment components arising from the 
1 ~ 2 charge transfer are completely annihilated by the contributions coming 
from the corresponding 2--> 1 charge transfer configurations. (1 and 2 are the 
labels of the chromophores here.) Consequently the "delicate" charge transfer 
configurations do not play any role in the final transition moments of the A 
excitation. 

On the other hand, in the case of the B excitations the transition moment 
components lying in the interchromophoric axis are permitted. The origin of the 
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Fig. 4. Rotational strengths of the third and fourth transitions in glyoxal. For designations see Fig. 
1. (a) transition of symmetry A. (/9) transition of symmetry B 
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most important  transition m om en t  contributions in this direction are the inter- 
chromophoric  charge transfer configurations. Since these configurations are 
poorly described due to the approximate  nature of the long range delocatization 
corrections, errors can be expected. Really, the calculations using only the TSI  
tail corrections are erroneous,  but significant improvement  is found, when the 
description of the long range corrections is improved via the consideration of 
the through-one-bond interactions (TBI). 

The rotational strengths of the third and fourth transitions lying at about  7 .0-  
7.7 eV, are depicted in Figure 4. G o o d  agreement  is found for both A and B 
transitions with the TSI and with the TSI  + T B I  corrected wave functions. We 
can suppose that the role of the charge transfer configurations in this second B 
transition is not so important  as in the first one, since the TSI method alone 
gives satisfactory agreement  with the full SCF results. 

4. Conclusions 

Using the SLMO-s  we have a qualitatively correct description of the excitation 
energies, but this method is completely inapplicable to the investigation of the 
fine details of the conformation dependence of the excitation energies and for 
the description of the very sensitive quantity, the rotational strength. The con- 
sideration of the delocalization corrections has proved to be of crucial importance 
to calculate the latter quantities. The method proposed here, involving the 
simultaneous evaluation of the through space and through bond delocalization 
corrections, can be useful for the calculation of the rotational strength in large 
systems, if the role of the long range electron delocalization is only of minor 
importance.  

Another  possible advantage of the present  scheme is that it can serve as a natural 
way to truncate the CI expansion of the excited state wave function. Pairs of 
LMO-s ,  localized in far regions of the space, are expected to have small contribu- 
tions to the corresponding CI  matrix elements.  Thus one can per form a much 
more  effective CI calculation for the excited states of large molecules. Work  on 
this line is in progress. 

Acknowledgements. The authors are indebted to Drs. I. Mayer and M. Kajtgr for discussions and 
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